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1. Introduction. Keck telescope is planning to utilize adaptive optics technology to improve the
resolution of the instrument. Telescopes operating in the atmosphere arc limited by the secing conditions
al the telescope observational site.  An excellent sceing site such as Mauna Kea affords diffraction limited
telescope performance to aperture sizes of approximately .3m. The consequence of this limit on astronomical
obscrvation is that although a large telescope such as Keck has tremendous light gathering power, the
resolution of the 10 instrument is not significantly greater than the resolution of a .3m telescope.

The objective of this study isto investigate and compare slope and curvature wavefront sensing methods
for a proposed natural guide star adaptive optics systemn for the Keck telescope. Specificaly we will evaluate
the error in wavefront reconstruction resulting from these wavefront sensing mechanisms. A model of the
Kcck telescope is used to corroborate the analysis and to simulate the curvature sensor; A brief summary
of the paper follows.

The sccond section analyzes the curvature sensing method. The anaysis includes nonlinear-, diffraction,
and noise cffects. Within a geomcetric model of intensity propagation it is shown that the nonlinearities
of thescusor can be characterized through the Gaussian curvature of the wavefront . The scale of this
nonlinearity grows with the sensitivity of the incasurement. An expression characterizing the balance between
the nonlinearity and noise characteristics is derived. It is shown that diffraction effects can beincorporated
virr a convolution of the curvature signal with the point spread function of the telescope.

Section 3 deals with reconstruction error for slopesensing and curvature sensing. Covariance matrices
of the reconstruction error for both sensing methods arc developed. For the case of sguare arrays analytic ex-
pressions arc given for the reconstructed wavefront variance. It is shown that these variances are determined
fromn the cigenvalues oOf the Laplacian operator discretized by a 5- point scheme. Because these eigenvalues
arc known for the sguare geomctry, the variances can be simply calculated.

In the fourth section a more detailed connection between wavefront reconstruction and correction is
developed to analyze the trades between curvature and slope sensing. It is shown that the contribution of
sensor /reconstruction error to the correction error depends on the actuator placement. This is in contrast to
most analyses where fitting error and sen.sor/reconstruction error arc treated independently. The numerical
results comparing curvature and Hartmann scnsor wavefront reconstruction indicated that for the scale of
the Keck adaptive optics systemn under consideration® (approximately 100 subapertures), Hartmann sensor
estimation error was superior to curvature scusor estimation error. However, it was observed that curvature
sensing compared more favorably as the numnber of sensors increased as opposed to decreased. This result
is somewhat contrary to what has been previously reported8.This phenomenon is explained in terms of
the accuracy (in the sense that the Laplacian is a second order measurement while a gradient is a first order
measurement) of the two sensing methods, and an asymptotic expression is given for the estimation variance .
for bothschenics.

2. Curvature Sensing.

T'hemethod of curvature sensing using intensity mecasurcinents to approximate the Laplacian has been
described in several paperts6 Briefly, this mncthod relics cm forming a normalized difference of intensities
in two planes syminetrically displaced from the focal p] ane. The derivative of the intensity in the direc-
tion of propagation is shown to be proportional to thel.aplacian of the wavefront surface. Thus, intensity
measurcinents in displaced planes normal to the direction of propagation provide a finite difference approx-
imation to the differential intensity, and hence to the wavefront Laplacian. The Laplacian together with an
cstimate of the wavefront slope normal to the boundary is sufficient to pose a standard Neurann problem
for estimating the wavefront. In this manner curvature sensing provides an aternative method for wavefront
reconstruction. Of particular interest here is the perforimance of this methodas a function of displacement
from the focal plane. The trades investigated are between sensor sensitivity and sensor nonlinearity. We will
also investigate how diffraction affects the curvature sigiial. We begin by discussing how the signal gives an
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approximation to the 1 ,aplacian.

Fix a planc P transverse to the direction of propagation. 1,ct the function zrepresent the wavefront
error function, the deviation of the wavefront from being a plane wave propagating in the z— direction. Lt
Io(,y) denote the intensity of the signal at a point (x,y) € 7. From geometric optics, the intensity 7, at
apoint displaced a distance d:¢ along the norinal to the wavefront surface is given hy
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where // and K arc the mean and Gaussian curvatures of the surface, respectively,
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] lere Az denotes the Laplacian, Az = 2., + 24y. Expression (1) can be deduced from the intensity law
of pcometrical optics and curvature formulas for parallel displaceient of surfaces®. Define the normal ized
diflerence Q as
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It is straightforward to show that so long as1 321 -}¢?K <0,
2¢H]
Q= - 4
YT 1L K (4)

This together with the assumption of paraxial rays leads to the transport equation

—d] = VI . Vz - ]OAZ (5)
Oz

The transporl equation above is also valid under paraxial physical optics assurnptions?.

Jor most applications the gradicnt. of the intensity V1 vanishes across the aperture and (5) involves only
the Laplacian term, The curvature signal is usually modeled by the transport equation, although the ex-
pression for @ captures the finite difference approximation (within the geometric optics mode] for now) that
is made inthe actual implementation of the sensor. Using the transport equation requires sinall displace-
ments because it is a lincar approximation. The purpose here is toshow the trade between displacements,
nonlinearities, and sensitivity, and thus (4) is more applicable. The sensitivity of the sensor will be shown
to improve for large displacemnents (big ¢), however the nonlincarity from the Gaussian curvature term will
then becorne more significant.

Consider an implementation of the curvature sensor where the entrance pupit is imaged in the symmet-
rically placed planes F. and I, each at a distance 1 froin the focal plane /. L.et f denote the system focal
length. Then the value of the cterin in (4) canbeshowntobeew f2/l, for 1<< f. This latter condition
is typically easily satisfied. (For the Kcck application] f:150mandl! < .1 m.) Within the assumptions of
geomnetric optics and paraxia rays the following relationship between the normalized intensity difference in
the image planes and the lLaplacian at a point (=, y) in the pupil plane holds:

Ly (- e/ f - W/f) - ()], 1y]]) - Az
Ly leff, - /)4 (/] ly/f) T4 €Ky
where K, again denotes the Gaussian curvature of the wavefront 2.
Next wc will investigate how noise affects this signal. Assume asensor integration time of A7’ seconds,
andlct A denote the area of the detector in the planes 11°. and F,, Thenumber of photons captured by

these detectors over the period A7'is modeled as independent Poisson processes N, and N. with means
N, and N_, respectively. The mean signal intensities in the two planes are then

(6)

Ny
= =~ - i’)
]d A7VA ( ')

2




~
¥

LetJo=(Zy -1 1. )2, rind define the randorm variable S by

5 Ny- N
S= -
2I0ANT' A" ®)
Then
A
BS ., 9
5] Iyt L ®
and the variance of the estiate is computed using the Poisson statistics as
E[(S- BS)?Y): - L. (lo)
N, 4 N
From (3), (4), and (9) obscrve that
) 3
12(8) = ezt ¢plz)  with (z) = »1‘ l‘\;];( (11)
and couscquently )
Dz= E(S/e) 1 ¢(2)]c. (12)
Now definc the random variable 5 = §/t - I5(S/t). The mcasured signa from (8) is
'y b= S‘/() (13)
and thus WC arrive at the sensor model
AENzK,
= Az- =202 14
y= Az 17 K, n (14)
with 1
Em)=0 and B - o . 15
-0 wd BN Lot o 05)

. ] Ience the balance that nwst be maintained is to keep the noise level sinall by choosing ¢ to be as large as
possible, while keeping the nonlinearitics at bay with ¢ sufliciently small.

3.3. Diffraction Effects. To understand how diffraction modifies the geometric model of curvature
sensing, let, h, (z)denote the impulse response between the object plane 0 and the image plane I . Diflrsc-
tion effects at the plane 1) can be modeled by convolving the intensity 1, (=, y) with the squared modulus

of theimpulse response®,

1§ (@, v0) = l b, (4 - 2,51 = 9L (=, y)dedy, (16)

where 1, (x,y) is the geometric optics prediction] of theiutensity in the iinage plane and 3, is the support
of 7, (where it is nonzero). For 1 << f wc can replaceh, with h, where k denotes the impulse response in
the focal planc. Diffraction effects in the plane F°_canbe approximated in a similar manner:

ey s [ - sy - P ey, (17)

where 1. (z, y) is the geometric optics inteusity ill F_
let X denote the characteristic function of a set (x(S)(z) . 1if z€ S, O otherwise), and define the
normalized immpulse response h
= Rz, y)|?
iz - M0

iz, y)[2dzdy’
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The following expression for the diffracted curvature signal is obtained

I @) - 1% @yy) | dex Bal(1 - 2 KX 021 1/2ha x( = 20) - 1/2he X0 - %)
19 (@9 4 1% (2,9) By (1= CK)x(2, N3 )4 1/2h s x[(5y =B ) U (. - )

where * denotes convolution. Thus for points far removed from the pupiledges or obscurations (i.e, well
within the inuterior of 2,N %), the curvature signal is characlerized hy convolving the individual terms of
the geometric model with the point spread function of the instrument. For systems with large aperture, ks
an approximate 6 function, and we recover the geometric model.

Modifying the sensor model to include diffraction effects is straightforward. Yor points in the interior
of »;M2_, the estimator is not estimating the Laplacian of the wavefront, Az, hut the convolution of the
the ] saplacian with the normaized point spread function of the instrument. Thus the model becomes

TE s Dz s ¢, (20)

where * again denotes convolution, ¢ is the nonlinear term from (1 4) and the noise term % has the same
statistics as before. Closer to the boun daries of the obscurations and pupil edges the quotient model (19)
must be used. (The quotient model also explains how the intensity signal canbe used for estimating the
radial derivatives on the boundary.)

Examples of the Curvature Signal. The Zernike polynomial for Lilt is

(or =z = ~p,c050in polar coordinates); R= pupil radius.
14

2(z, y) . 7

?}
R
Henee,

ANz=0.

1 *hc zero l.aplacian of tilt is captured by the intensity signa in Figures la- lc. In each of these figures
wc chose the displacement 1 from focus to be.05m, and the focallength of the system, f=- 150m. Thus
¢: 45 x 10°, Figurc 1 a contains the Keck prescription without central obscuration from the secondary
mirror. The magnitude of the signalincreases to unity at the edge of the pupil. From geometric optics
considerations, the width of the signal where it approximates unity can be shown to be proportional to the
radial derivative of the wavcfront aberration. IPigures 1b 1 ¢ contain the signal with obscuration. There is
more ringing to the signal in these cases because of the di fir-action contribution of the sccondary mirror. The
sipnal in the center for Figures 1b-] ¢ is due entirely to diffraction. Because the aberration consists of an x--
axis tilt, the terms containing the Laplacian and Gaussian curvature in (19) disappear. Along the y- axis
wc would expeet the signal to diminish in the obscured region hecause the terms in the numerator cancel.
This is preciscly the case as can be oh.served in Figure lc.
The Zernike polynomial for defocus is given by

z(z,y) = 2(;})2 »12(%)2 -- 1; R= pupil radius

Thus with a cocflicient of p multiplying the defocus term, the resulting Laplacian is

y 8[)

Az R? “

The corresponding geometric curvature signal for defocus is given hy

2
L@y-1@y -l
L@y 41 (my) 14 (L)

In both cases the signal is constant. The nonlinearity introduced by the Gaussian curvature term in the
denorninator is scenin the simulations by corparing intensities from normalized intensity maps as the imnage
planes arc moved closer to focus (Figs. 2a 2¢). The intensities increase sublinearly because of this term.In
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Table 1 the values predicted by linear theory (5), the geomnetric signal (4) and the simulations arc compared.
The geometric prediction and the simulations agree very WC]], while thelinear estimate overestimates the
sigual as the image plances arc moved closer to focus.

4. Wavefront Reconstruction. The problemn of wavefront reconstruction is to estimate the wavefront
across anaper Lure from sampled values. The sample values arc obtained from measurement devices such
as a ] ] artinann sensor, a shearing interferometer, Or cur vature sensor. These sensors donot provide direct
information of the wavefrout, but only of first or sccond derivative information through either slope or
cur vaturcincasurement.

The general setup of the reconstruction problem is fairly simple. l.et an aperture be defined by a
region I2in a plane with boundary 812.The reconstruct.io]l problemn for slope mcasurements is to determine
W(z),z ¢ DD given a sample of the gradient of W,VW(x;),i = 1, . . .,n. The problan for curvature
scnsing is to estimate W(z) given thesamples AW (i),4=-1, . . . . n.Vor simplicity wc will assurne the region
inthe planc is a square, (It can bie shown that with little penalty in estimation error, the reconstruction
problem can dways beimbedded into a square, from where it is possible to exploit the specific structure of
the est imation problein!®.)

We will assume that the square is d X d units and there are (N -} 1)2 regularly spaced nodes. We
let b denote the mesh width, so that ko- d/N. Webegin with an analysis of slope mcasurements in this
configuration. At each mcsh point consider the noisy vector of slope measurecinents

[S?j Si'/j = VW(-”fi,yj) + 755 (21)
where
iy~ [7},‘73- 7/39], (22)

with 7ijzero mean for every i and 7,and with constant, covariance F5(m7i3) = 0 “T2x2. (Under reasonable
assumptions the z and y slope measuremnents can be treated as indepcndcntll.)
The gradient VW (z:,y;) is approximated at interior mesh points hy the difference operator A,

(Anu)(ig) = (42107 1 BT BT (23)

To develop the minirmum variance estimator we write the diflerence operator above as

1 A7
A}, = (29)
wheic
(Au)(ig) , wigan - iy
and
(A¥u)(ig) = Wity - v
If A has independent columns, the minimum variance solution is obtained as
a= (A "A) ATy, (25)

Observe that since A has anontrivial kernel spanmed hy the single vector v =- [1 ... 1]7, AT A is not invertible.

This iszmcrc]_y a uniqueness problem, and one way of fixing solutions is to define amap ¥ : RNAD? -1,
RN4D® oo that the range of ¥ is the orthogonal complement, cal it U, of the subspace spanned by v. We
cannow repose the problemas finding the linear minuimum variance estimate in the subspace U:

min (|6 - uf?); y: Ayu-y where uc U. (26)

This is equivalent to the problemn

min FE(|¥(d - w|?);y = Ay Yw +y 27
u
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This reposed problem has the interpretation that wc arc sccking solutions to the problem where the “mean”
wavefront is zero. Wc could have chosen anyother matrix, say 1': RIN+1 1 - »y RN Uguch that Al has

full rank to make the problem well posed. Howcver, it canbe shown that the choice ¥ leads in a certain sense
1o thie minimum variauce wavefront ervor solution, Writing g and 4y for the solutions in the subspaces,
R(¥)and R(1*), respectively, it can be shown that

Eldy - wel?) = B{li - url’ - (< 0, i — ue >)?},

where v = v/|v|, withv = [1. .. 1]7.
Choosing ¥ also facilitates the expression for the variance of the estimate as indicated in the theorem
below.

Theorem 1. Let Q = E(nn”") denote the measurcinent noise covariance matrix from (27) and let 4a
be the diflerence operator defined in (24). Then the minimum variance solution is

@ = i, where = (WAL Q 1ALV 1UTQ 1ATy,

with variance

E(u- 1217 tr{[¥' AL Q 1 ALY 1)
@ is a scalar matrix, i.e, Q = 0°1 then the variance can be cxpressed as
E(u- 4% = o?h* 0 {[¥P AT AV} 1)
A1
2;2
o h >,4 -Ai’
where the Ms arc the nonzero cigenvalues of A7 A

Wc will next sce how a very analogous situation develops for curvature sensing when using a 5 point
discretization scheme for the Laplacian. A point to keep inmind while we develop the result below is that

it istied to this particular approximation of the l.aplacian,and other options for discretization are available
for curvature scnsing.

Curvature sensing produces the following sampled Laplacian signal:
AU),'J‘ -+ T = Yij (?8)

Discretizing thg Laplacian via the 5 point scheme!? leads to the di flerence equation

4wy~ wyy. 1 - Wiyl T Wil Wiy 15 _

i,2 Yij-tmij .

Fromn this discretization it can be shown that
A’)I,,'Ah'(l) -l y
with A}, defined asin (24). Analagous to Theoremn 1, we have for curvature sensing reconstruction

Theorem 2. Let Q denote the covariance of the noise tern in (28) and let Ax be the difference operator
definedin ('24). Then the minimurn variance solution is

G (T AT ALY 10Ty,
with variance
E(lu - 4?) = tr{[¥TAF ALQAT ARY]) 1)
If Q is a scalar matrix, i.e., Q =-- 02] then the variance can be expressed as
E(lu - 4°) = oWt {3 AT AAT AY] )
~ 1

234
o‘h > ’/\?,
i
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where the Mfs ac the nonzero cigenvalues of A7 A.

‘Jhere aretwo diflerences between the variances for slope and curvature sensing. The first is the factor
of 1 that appears iu the curvature sensor reconstructionr error, versus the factor of h%inthe slope sensing
reconstruction error. The sccond diflerence is that the reconstruction in curvature reconstruction involves
the sum over the squarc of the reciprocals of the cigenvalues of A7 A, as opposed to the reciprocals of the
eigenvalues for dope sensing. Thus we scc immediately that the trade between curvature and slope sensing
is povernied by both the growth of the reciprocals of the eigenvalues of the Laplacian and the mesh size.

On square domains it is fortunate that these cigenvalues can be cornputed analytically so that direct
comparisons between the two methods can be made.

Proposition 3. The cigenvalues of A7 A arc given by

nj .
Aij= 4 - 2cos- ;ll-zl | 2co.c-N ‘17 , 4,75:0,...,N.
This result will be called upon in the next section

4, F¥sthination Error, Curvature vs. lHartimann Sensor Comparison. In this section we will
investigate and compare the estimation error for Hartmannand curvature sensors. l.et w(z) denote the
instantancous wavefront and u(z) the corrected wavefront surface. It will be assumned that u(x) is forined
fronithe actuator response to thereconstructed wavefront based on the sensor information, (This willbe
made precise below ) The mean square error is

. w(z) - ufx)Pde
T iny @) we)es, 29)

where A is the aperture of the deformable mirror, and A(A) denotes its area. (2av/J/A gives the rms
wavefront error in radians of phase, where A denotes the sensing wavelenglh wavelength.) Now u(z) is
developed as a linear function of the estimated sampled wavefront vector 1 obtained via the reconstruction
process. Thus wc  write @ =- [@(z1 @ (zy))? , where () is an estimate of the wavefront at #i. For each
wavefront function w(2), let 8w denote the vector fuw(z1) .. . w(zn)]”. Let I2(A) denote the space of square
intep rable real valued functions on A with inuer product

</Jig>: I f(z)g(x)dz.

Since u is a lincar function of 4 there exists a linear operator 7' : RN -> 1,2(A) such that
u = T,

11 there was no sensor or reconstruction error we would have 1 = w, and J would simply reduce to the
fitting error Jygq

i
NI @) - T6w|d. 30
» MMAMM) bulda (30)
Next let 2 denote the expectation operator and obser ve that
1
F(J) = -~ ot / w(z) — T'6w)’dx ~}—/ BT (6w - 0)|%dx
() A(A){AI() l A[I( i
/ E{(w- T6w)(T (6w - w))}dz}
A

The first integral on the right above is recognized as the fitting error Jyit- Note that the last integral vanishes
since 1 IS anunbiased estimate of w, i.e, F(dw-w) = O. ‘1'bus,

mner4h&)JmnmhmVWu (31)
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So now wc will examine the integral term above. Observe that since 71 RN -5 La(A), there exist
“influenice” functions {¥i}Y i C Lo(A) such that Teq = Ui, where € denotes the vector in RN with a oue

Y entry and zeros elsewhere. Let 7* denote the adjoint of 7T,

in the ¢
<T'v,a>: < v,Ta > for allv ¢ Ly(A), @ ¢ RN,

and note that 7*7" : RN -» RV is represented as a matrix with 454 entry (27 7')i;

(T‘rj'),;j * 4 \l’iqudit. (32)
“w
Henee,
1 1
- kK T (6w - W)|?dx = - I <T*T(6w - W), (bw — W) >pn . 33
AN /A| (bw ~ W)|°dx AN (6w - W), (bw — W) >pw (33)
Now let 2} denotethe N x N covariance matrix of the estimate of dw,
Y= B(bw - w)(bw - 'LD)T]. (34)
Thus we obtain 1 1
R OB B €IV 1L ISR 1 ) 7 M & 35
Ay [ G- B e, (35)
so Lthat, 3
B = Jdygg 4~ 8177, 36

As with the standard adaptive optics error analysis, the static error contains the sum of the fitting
crror plus a scusor/reconstruction error termn containing the estimation covariance matrix 2. However, in
this anal ysis it is clear that this sensor/rccorlstrucLiorl errorislinked to the spatial correlation matrix of the
actuation sch eine via the matrix ‘2'* 7'. Thercfore, when cornparing various sensor/reconstruction methods,
the precise term of interest is the estimation error, which wc denote as Jesi,

Jost = (3707 37)

1
A(N)
Although the correlation matrix 7* 7' can be derived from either analytical models or experimental
data, for the purpose of the analysis of this section wc make the simplifying assumption that, the influence
functions arc orthogonal with respect to the Lyinner product. Thus we usc the approximation

A(A)

TR Ty

(38)
For segimented mirrors this assumption is valid. Tor continuous face sheet mirrors a more realistic aud

conservati ve assumption is that 7*7" is diagonally dominant. A multiplicative factor dightly greater than
unity would then appear onthe right side above.

5.1. Curvature Vs Slopce Sensing Frror Estimates. Putting the various pieces of the analysis
together we can now give sornic simple estimates for the estimnation error Joq for slope and curvature sensing.

Inthe case of a sguare aperture equipped withau N x N array of subapertures, the covariance matrix
3: for either curvature or Hartmann sensing is related to the eigenvalues { Akt txi of A7 A givenin ] reposition
4.3. Toapply the formmula for Jes: it is necessary to compute the variances

N - ] ‘ ~ 1
tTQ'slopc) == Oflope_ L"A“ and  (2eurye) = oz\“_wL.}\Q ,
kit OF ki TR

e o2
where o3, .
subaperture,

and 02,,.,. arc the variances for slope and curvature scnsing, respectively. Assuming a circular
Oslope = 3 M (h, /\)/IG}L\/N,
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where A is the operating wavelength, k= subaperture diameter, N is the number of photons pcr subaperture,
and /(\, h) is a sccing related term which gives the slope variance correction factor as a function of k/ro.
I{h, )\) is near unity for k <70'* Wc will takethc previous valucs, f = 150m, and 1 = .05m to compute
0 curve- Reconstruction errors were compared for various array sizes with N = 5, 10, 20, and 40 corresponding
Lo mesh widths of A= 2in, 1m,.5m, and .25 m, respectively. These results arc contained in Table 2.

Table 2. Curvature vs. Slope Sensing Reconstruction

h .25 5 1.0 2,0
Hartmann 5.84 x 10- ’ 7.87 x 10-7 1.23x 10- ¢ 2.13x 10- &
Curvature 9.07x10'7 1.82 X10-6 3.68X10-6 7.60 x 10-6

What is observed in the table is that the curvature sensor corn pares more favorably with the Hartmann
sensor as the resolution increases, which is somewhat contrary to what is typically reported?. The trade
that occurs between the two sensing methods is that although reconstruction error from the Laplacian
measurcemnent grows more rapidly than the reconstruction error from gradient mcasurerncnts, this effect. is
mitigated by the properly that the lLaplacian is a higher accuracy measurement (O(h?) versus O(h).) This
trade is made more evident in the asymptotic estinates below.

For Jarge N the sumns in Theorems 1 and 2 can be approximated as

3.~ O(Nag(N)),
Akt

Lk

and 1
~ 1 y
L \2 ]\ )
1,k kl
Irom these approximations wc obtain asymptotic estimates of the surface reconstruction error for slope
sensing and curvature sensing:

Theoremn 4. et d = length of asquare aperture, and let b denote the mesh size. Then for large d/h,
the following asymptotic reconstruction error estimmates arc obtained for slope sensing and curvature sensing,
respectively:

T = 02, hPlog(d/h), (39)
and
J::‘rue ~ Ocurvch?d'z (40)

Most previous comparisons of slopc and curvature sensing reconstruction fixes the mesh size & and
varies theaperture size d. As d increases (withh fixed) it is seen that the rins error from slope measurement
rcconstruction (RM Syiope) grows logarithmically aud the rms reconstruction error from curvature sensing
(RM Seurve) Qrows lincarly as reported!. The error propogates differently, however, if wc fix the aperture
size and deerease the mesh size. Recalling that

3n A1
Oslope = -16}1 \/N’ (41)
and

o . ]— 42
et (42)

where N denotes the number of collected photons, we find that

3 A

RM Sutope = ¢ Vg (@) 43)




and

lhd
JVN
Thus we see that curvature sensing may actually be advantageous to Harmann sensing when the subaperture

diameters must be small. (Such a circurnstance is envisioned for the dense segimented primary mirror of the
SEELENE telescope!.)

]uuscurue = (44)
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